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We analyze the electronic properties of a simple stacking defect in Bernal graphite. We show that a bound
state forms, which disperses as �k−K�3, in the vicinity of either of the two inequivalent zone corners K. In the
presence of a strong c-axis magnetic field, this bound state develops a Landau-level structure which for low
energies behaves as En� �nB�3/2. We show that buried stacking faults have observable consequences for surface
spectroscopy, and we discuss the implications for the three-dimensional quantum Hall effect �3DQHE�. We
also analyze the Landau-level structure and chiral surface states of rhombohedral graphite and show that, when
doped, it should exhibit multiple 3DQHE plateaus at modest fields.
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I. INTRODUCTION

An explosion of research activity associated with the
novel two-dimensional material graphene1 has prompted a
re-examination of its bulk parent, graphite. Much, of course,
is known about graphite.2 Bernal graphite is a hexagonal
crystal consisting of graphene sheets stacked in an ABAB
configuration. The sp2-hybridized � electrons form double
bonds between the carbon atoms, while the remaining �
electrons, in the pz orbital, are itinerant. The electronic struc-
ture parameters for graphite were first derived by Wallace
and by Slonczewski, Weiss, and McClure �SWMC�.3 Within
each plane, the � electrons move on a honeycomb lattice
with a nearest-neighbor hopping integral �0�3.2 eV. Of the
four atoms per unit cell, two are arranged in vertical chains,
with a vertical nearest-neighbor hopping of �1�−390 meV.
Additional further neighbor hoppings are also present. For
example, the � electrons on the nonchain sites undergo two-
layer vertical hopping through open hexagons in the neigh-
boring layers, with amplitude 1

2�2�−10 meV. This results
in a very narrow band of width 40 meV along the K-H spine
of the Brillouin zone, with electron pockets at K and hole
pockets at H.4

Recently, striking experimental observations of what may
be bulk three-dimensional �3D� quantum Hall plateaus in
graphite have been reported.14 Any two-dimensional �2D�
system such as graphene, which exhibits the quantum Hall
effect �QHE�, should exhibit a three-dimensional quantum
Hall effect �3DQHE� if the interplane coupling is sufficiently
weak. The reason for this is that the cyclotron gaps between
Landau levels narrow continuously as one adiabatically
switches on the c-axis couplings and cannot collapse imme-
diately. For a 3D electron system in a periodic potential and
subjected to a magnetic field, a generalization of the
Thouless-Kohmoto-Nightingale-den Nijs �TKNN� result7 by
Halperin6 shows that the conductivity tensor must be of the
form

�ij =
e2

h
�ijkGk, �1�

whenever the Fermi level EF lies within a bulk gap, where

�ijk is the fully antisymmetric tensor and G� is a reciprocal-

lattice vector of the potential �which may be G� =0�. The Hall
current is then carried by a sheath of chiral surface states.
Eventually, however, the c-axis hopping will become large
enough that the Landau gaps collapse. Equivalently, for a
given value of the c-axis hopping �1, the magnetic field B
must exceed a critical strength Bc in order that the Landau-
level spacing overwhelms the c-axis bandwidth and opens up
a bulk gap.

Typically, the field scale Bc is extremely large and much
beyond the scale of current experimentally available fields.
For a system with ballistic dispersion described by an effec-
tive mass m�, the orbital part of the spectrum �i.e., neglecting
Zeeman coupling� yields a dispersion �n= �n+ 1

2 ��	c, where
n is a non-negative integer and where 	c=eB /m�c is the
cyclotron frequency. The cyclotron energy may be written as
�	c=W� · �B /B
� and the field scales as B
=hc /e
, where

 the unit-cell area. W� is on the order of the bandwidth in
zero field, which is typically several electron volts. Since
hc /e=4.13�105 T Å2, B
 is typically enormous, on the or-
der of tens of thousands of tesla. Thus, if the c-axis band-
width is W�, the critical field is given by Bc= �W� /W�� ·B
,
and even highly anisotropic materials with W��10−2W� will
have critical fields in the range of hundreds of tesla.

As shown by Bernevig et al.,5 similar considerations
would apply for graphene sheets in AAA �simple hexagonal�
stacking. The Landau-level dispersion is then

En�B,k� = 2�1 cos�kzc� + sgn�n��0
�nB/B0, �2�

with B0=B
 /2��3=7275 T, where �0�3.16 eV is the in-
plane hopping and �1�0.39 eV is the hopping integral be-
tween layers.3 The gap between Landau levels n and n+1
collapses at a critical field

Bc,n = �4�1

�0
�2 B0

��n + 1 − �n�2
. �3�

For n=0 one finds Bc,0�1800 T. However, due to the Ber-
nal stacking, one finds5 that the principal cyclotron gap sur-
rounding the n=0 Landau levels opens above Bc=15 T
�electrons; n= +1� or above Bc=7 T �holes; n=−1�. When
the Fermi level lies within either of these gaps, the Hall
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conductance is quantized at �xy =2e2 /hd, where d=3.37 Å
is the interplane separation.

The analysis of Ref. 5 shows that the second cyclotron
gap should not open below fields on the order of Bc,2
�1000 T. This suggests that the multiple QHE plateaus ob-
served by Kempa et al.14 are of a different origin and are not
describable by a model of crystalline Bernal graphite alone.

In this paper, we consider two variations which lead to a
different plateau structure to that of crystalline Bernal graph-
ite. The first is rhombohedral graphite �RG�, which is stacked
in ABCABC fashion. For this structure, we find

Bc,n = ��n + 1 + �n�2Bc,0,

with Bc,0�0.123 T. When EF lies in the Fermi level be-
tween the n and n+1 Landau levels, the Hall conductivity is
given by �xy = �4n+2�e2 /hd. Ab initio calculations show the
total energy of rhombohedral graphite to be approximately
0.11 meV per atom larger than the Bernal hexagonal phase.8

With such a small energy difference, even highly oriented
pyrolytic graphite �HOPG� is believed to contain several per-
cent rhombohedral inclusions. Powdered graphite samples
with up to 	40% of the rhombohedral phase are obtainable.9

The second possibility we examine is that of a simple
stacking fault in Bernal graphite of the form ABABCBCB.
This fault interpolates between two degenerate vacua: the
ABAB and CBCB Bernal phases. We analyze the c-axis
transport through such a defect, within a simple model of
nearest-neighbor hopping and compute the S matrix as a
function of in-plane wave vector. As expected, the transmis-
sion is sharply attenuated in the vicinity of the Dirac points.
We also find a different bound state associated with
the stacking defect, with two-dimensional dispersion E�k�
� �k−K�3 near the Dirac points. In the presence of a c-axis
magnetic field, this leads to a bound-state Landau-level en-
ergy E�n ,B�� �nB�3/2. In the Appendix, we undertake a cal-
culation of the bound-state spectrum in zero field for the full
SWMC model,3 which includes seven tight-binding param-
eters. We conclude with a discussion of surface spectroscopy
of buried stacking faults and with remarks about the rel-
evance of our results to future experiments.

II. RHOMBOHEDRAL GRAPHITE

In RG there are two sublattices �Fig. 1�, in contrast to four
in the case of Bernal hexagonal graphite �BHG�. The primi-
tive direct lattice vectors are

a1 = ax̂ ,

a2 =
1

2
ax̂ +

�3

2
aŷ ,

a3 =
1

2
ax̂ +

1

2�3
aŷ + dẑ .

The basis vector �=− 1
3 �a1+a2� separates the A and B sublat-

tices. Note that a3=dẑ−�. The lattice parameters are a
=2.46 Å and d=3.37 Å.

Our treatment starts with a simplified version of the work
of McClure.10 We consider several types of hopping pro-
cesses as follows:

�i� in-plane A-B hopping

H1
AB = − �0
t��� + t�a1 + �� + t�a2 + ��� , �4�

where, t�d� is a translation operator through a vector d;
�ii� neighboring plane diagonal A-B hopping

H2
AB = �3
t�a1 − a3 + �� + t�a2 − a3 + �� + t�a1 + a2 − a3 + ��� ,

�5�

�iii� nearest-neighbor and next-nearest-neighbor plane
vertical A-B hopping

H3
AB = �1t�a3 + �� + �2t�a1 + a2 − 2a3 + �� , �6�

�iv� neighboring plane diagonal A-A hopping

H4
AA = �3
t�a3� + t�a3 − a1� + t�a3 − a2�� + H.c., �7�

�v� neighboring plane diagonal B-B hopping

H4
BB = �3
t�a3� + t�a3 − a1� + t�a3 − a2�� + H.c. �8�

The full Hamiltonian is then given by

H = � H4
AA H1

AB + H2
AB + H3

AB

H1
BA + H2

BA + H3
BA H4

BB � , �9�

where Hn
BA= �Hn

AB�† for n=1,2 ,3. From Wallace and
SWMC,3,12 we take

�0 = 3160 meV, �1 = 390 meV,

�2 = 10 meV, �3 = 250 meV.

�In the language of McClure,10 �2�=�2 and �1�=�3, and we
ignore McClure’s parameters �0� and �2�.� We then have

H = � 0

0 1
�� A B

B� A
��� 0

0 1
� , �10�

with =ei��1+�2�/3 and

FIG. 1. �Color online� Crystal structure of rhombohedral
graphite.
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A��1,�2,�3� = �3e−i�3T��1,�2� + �3ei�3T���1,�2� ,

B��1,�2,�3� = − �0T��1,�2� + �3e−i�3T���1,�2� + �1ei�3

+ �2ei��1+�2−2�3�,

where

T��1,�2� = 1 + ei�1 + ei�2. �11�

The energy eigenvalues are clearly

E���� = A���� �B���� . �12�

Under a 60° rotation, we have

�1� = �2, �2� = �2 − �1, �3� = �2 − �3. �13�

One then finds A����=A��� and B����=ei�2B���. Hence,
E�����=E����.

Degeneracies identified with a one-parameter family of
Dirac points occur when B���=0. Solving, we obtain the
relation

T��1,�2� = �1ei�3 + �2ei��1+�2−2�3� �14�

along the degeneracy curve, where

�1 �
�0�1 + �2�3

�0
2 − �3

2 = − 0.124, �15�

�2 �
�1�3 + �0�2

�0
2 − �3

2 = − 1.30� 10−2. �16�

The energy along this Dirac curve is

E��D� = E0 + W cos��1 + �2 − 3�3� . �17�

with

E0 = 2�1�3 = − 62 meV, �18�

W = 2�2�3 = − 6.5 meV. �19�

Since �1 and �2 are small, the Dirac curve, when projected
into the basal Brillouin zone, lies close to the zone corners.
Note that E��D� goes through three complete periods as �3
advances from 0 to 2�, resulting in McClure’s “sausage
link” Fermi surface,10 depicted in Fig. 2. To find the equation
of the Dirac curve, we expand about �= ��1 ,�2�= � 4�

3 , 2�
3 � at

the K point, writing �=�+�, and find

T��1 + ��1,�2 + ��2� = e−i�/6��1 − ei�/6��2 + O���2� .

�20�

Solving for the Dirac line ���3� as a formal series in the
small parameters �1 and �2, we obtain

��1 =
2
�3
− �1 sin��3 −

�

6
� + �2 sin�2�3 +

�

6
�� + O��2� ,

��2 =
2
�3
�1 sin��3 +

�

6
� − �2 sin�2�3 −

�

6
�� + O��2� .

Note that the bandwidth of the Dirac point energies is
tiny; 2W�13 meV. This means that the Landau levels are

quite narrow, more so than in Bernal stacked graphite. The
Fermi surface resembles the sketch in Fig. 2, which is
adapted from Fig. 2 of Ref. 10.

A. Weak fields: Kohn-Luttinger substitution

We assume the magnetic field B is directed along ẑ. To
obtain the Landau levels, we expand about the Dirac points.
�This is essentially equivalent to expanding about the Fermi
energy since the bandwidth of the Dirac points is so tiny.� We
write

k → K + �−1� , �21�

where �=p+ e
cA. With �� j = �k−K� ·a j, we have

��1 =
1

�
�xa , �22�

��2 =
1

2�
�xa +

�3

2�
�ya . �23�

Recall 
�x ,�y�=−i�2 /�B
2 where �B=��c /eB is the magnetic

length. From Eq. �20�, to the lowest order in ��1,2, we have


T,T†� = 2i sin��/3�
��1,��2� = 2��3p/q , �24�

where the flux per unit-cell area 
=
�3
2 a2 is assumed to be a

rational multiple p /q of the Dirac flux quantum �0=hc /e.
This means that we may write

T��1,�2� = − �b , �25�

where

� = �B/B0 �26�

and b† is a Landau-level raising operator; 
b ,b†�=1. Recall
that the field scale B0= �hc /e� /3�a2=7275 T. It is conve-

FIG. 2. �Color online� McClure’s sausage link Fermi surface for
rhombohedral graphite, greatly exaggerated. See also Fig. 2 of Ref.
10.
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nient to define �̄3=�3− 1
3 ��1+�2� and to absorb a phase into

the definition of b, taking T=−�e−i�̄3b†. Note that when the

magnetic field lies along the c axis, it is exp�i�̄3� and not
exp�i�3� which commutes with the magnetic translations
t�a1,2�. The Hamiltonian is then

H = E0 + W cos�3�̄3� �27�

+ �� − �3�b + b†� �0e−i�̄3b† − �3b

�0ei�̄3b − �3b† − �3�b + b†�
� . �28�

Consider the matrix operators

Q0 = �0� 0 e−i�̄3b†

ei�̄3b 0
� , �29�

Q1 = �3�b + b† b

b† b + b† � . �30�

The eigenvectors of Q0 are

��0� = ��0�
0
�, E0

0 = 0 �31�

and

��n
�� =

1
�2
� e−i�̄3�n�
� �n − 1�

�, En
0 = � �n��0, �32�

where n=1,2 ,3 , . . .. It is easy to see that

��n
��Q1��n

�� = 0, �33�

as well as ��0�Q1��0�=0; hence, there is no first-order shift
of the eigenvalues. Therefore, up to first order in �, the
Landau-level energies are given by

En��3� = E0 + W cos�3�̄3�� ��0
�n , �34�

where n=0,1 ,2 , . . .. The gap between Landau levels n and
n+1 collapses when

��0
�n + W = ��0

�n + 1 − W , �35�

which gives a critical field of

Bc,n = ��n + 1 + �n�2Bc,0, �36�

with Bc,0= �2W /�0�2 ·B0=0.123 T.

B. Comparison with Bernal stacking

The ABAB stacking pattern of Bernal hexagonal graphite
is shown in Fig. 3. To obtain the critical fields in BHG, it
suffices to consider a simple nearest-neighbor model.5 Ex-
panding about the K-H spine in the Brillouin zone, we obtain
in the presence of a uniform c-axis magnetic field

H =�
0 ��0b 2�1 cos �3 0

�t�b† 0 0 0

2�1 cos �3 0 0 − ��0b†

0 0 ��0b 0
� , �37�

where �= �2��3p /q�1/2=�B /B0 as in the rhombohedral case
�Fig. 4�. The spectrum has explicit particle-hole symmetry.
For n=0 there are eigenvalues at ���2�0

2+4�1
2 cos2 �3�1/2

FIG. 3. �Color online� Top view of Bernal hexagonal
graphite.

FIG. 4. �Color online� Landau-level structure in rhombohedral
graphite within the tight-binding model of Sec. II, with Zeeman
term ignored. Principal band gaps are labeled by the Chern number
C �per spin degree of freedom�. When EF lies within a gap, the Hall
conductivity is 2C� e2

h /3d, where d=3.37 Å is the interplane
spacing.
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and a doubly degenerate level at E0=0. For n�0,

En
2 = �n + 1

2��2�0
2 + 2�1

2 cos2 �3

� �1
4�

4�0
4 + 4�n + 1

2��2�0
2�1

2 cos2 �3 + 4�1
4 cos4 �3.

�38�

In Fig. 5, we plot the lowest several energy bands versus
magnetic field for BHG. Due to the inadequacies of the
nearest-neighbor model, the principal gap surrounding cen-
tral E=0 Landau levels opens immediately for nonzero B.
Including more realistic band-structure effects, consistent
with the semimetallic nature of BHG, this gap opens at a
critical field of Bc�15 T for positive energies and Bc
�7 T for negative energies.5 The Hall conductance is quan-
tized at �xy =2Ce2 /hc0 when the Fermi level lies in a bulk
gap, where c0=2d in BHG and c0=3d in RG, where d
=3.37 Å is the spacing between planes, and C is a topologi-
cal integer associated with the gap. In both cases, the values
of C are such that �xy corresponds to the graphene quantiza-
tion per layer, changing by 4e2 /hd as one crosses a Landau
level. We indicate the width of the bands by shading the
region between cos2 �0=0 and cos2 �3=1. In both cases, the
Zeeman coupling is omitted; with g�2 the Zeeman splitting
is small compared with the cyclotron energy.

III. CHIRAL SURFACE STATES

As shown by Hatsugai,11 the Chern number C can also be
computed by following the spectral flow in a system with
edges, wrapped around a cylinder, as a function of the gauge
flux through the cylinder. To elicit this spectral flow, we de-
rive a Hofstadter Hamiltonian13 for RG. We start with the

Hamiltonian elements in Sec. II, but now treating them as
magnetic translations, which satisfy the algebra

t�a�t�b� = eia�b·n̂/2�B
2
t�a + b� , �39�

where B=Bn̂. For our problem we define the elementary
translations

t1 � t�ffi�, t2 � t�a1 + ffi� �40�

as well as �� t�dẑ�= t�a3+ ffi�.
Since with n̂= ẑ we have that � commutes with t1 and t2,

and we can specify its eigenvalue as ei�̄3. As for t1,2, we have

t1t2 = ei�/3t2t1, �41�

where �=
 /�B
2 =2�p /q is the flux per graphene hexagon in

units of �c /e. We may then write

H = �HAA HAB

HAB
† HBB

� , �42�

with

HAA = �3�ei�̄3t1 + e−i�̄3t1
†� + �3�ei�̄3 + e−i�̄3e−i�/6t1�t2

+ �3�e−i�̄3 + ei�̄3e−i�/6t1
†�t2

† = HBB �43�

and

HAB = ��1ei�̄3 + �2e−2i�̄3 − �0t1
† + �3e−i�̄3t1�

+ ��3e−i�̄3 − �0e−i�/6t1�t2 − ��0 − �3ei�̄3e−i�/6t1
†�t2

†.

�44�

We define the basis ��n�� as follows:

t1�n� = ei�̄1ein�/3�n� , �45�

t2�n� = ei�2�n + 1� , �46�

where �̄1=�1 /3q and �n+3q�= �n�. Taking the matrix ele-
ments of H within this basis, one obtains a rank 6q matrix H
to diagonalize, with periodic boundary conditions. If we in-
troduce an edge by eliminating the coupling between states

�1� and �3q� and plot the spectral flow as a function of �̄1, we
obtain the top panel in Fig. 6. We can also obtain the chiral
surface-state flow for a zigzag edge, perpendicular to the
vector a1; this is shown in the bottom panel of Fig. 6. For
periodic systems, exact diagonalizations performed using the
Lanczos method for q up to 1500 with the package ARPACK

were found to agree with the weak field results of Sec. II A.

IV. STACKING FAULTS IN BERNAL
HEXAGONAL GRAPHITE

We now turn to an analysis of simple stacking faults in
BHG, first with B=0 and then for finite B. Consider first a
triangular lattice, which is tripartite, and its three triangular
sublattices A, B, and C. By eliminating one of these three
sublattices, the remaining structure will be a honeycomb lat-
tice. Now imagine a stack of triangular lattices. At each

FIG. 5. �Color online� Landau-level structure in Bernal graphite
within the nearest-neighbor hopping model, with Zeeman term ig-
nored. Principal band gaps are labeled by the Chern number C �per
spin degree of freedom�. When EF lies within a gap, the Hall con-
ductivity is 2C� e2

h /2d. When further neighbor hoppings are in-
cluded, particle-hole symmetry is broken and a finite field is re-
quired to open the principal gap �Ref. 5�.

STACKING FAULTS, BOUND STATES, AND QUANTUM… PHYSICAL REVIEW B 78, 245416 �2008�

245416-5



layer, we choose a sublattice A, B, or C to remove; this
defines a stacking pattern. Since it is energetically unfavor-
able to stack a honeycomb layer directly atop another, at
each layer we have two choices consistent with the layer
below. If the empty sublattices are in ABC et cyc. order from
layer l to layer l+1, we write �n,n+1= +1. If instead the order
is CBA et cyc., we write �l,l+1=−1. For RG, the � indices are
“ferromagnetic,” i.e., ++ ++ or −−−−. For BHG, the indices
are ordered “antiferromagnetically,” i.e., +−+−.

The three triangular sublattices A, B, and C are defined by

un1,n2

A = n1a1 + n2a2, �47�

un1,n2

B = n1a1 + n2a2 + ffi1, �48�

un1,n2

C = n1a1 + n2a2 + 2ffi1. �49�

We define three additional sublattices by

vn1,n2

A = un1,n2

B = n1a1 + n2a2 + ffi1, �50�

vn1,n2

B = un1,n2

C = n1a1 + n2a2 + 2ffi1, �51�

vn1,n2

C = un1,n2

A = n1a1 + n2a2. �52�

The sites �uA�n1 ,n2� ,vA�n1 ,n2��, etc. form a honeycomb lat-
tice, which we call the A or � structure. Bernal graphite is
stacked in an ABABAB configuration.

Within each honeycomb layer, we write the wave function
as a two-component spinor,

�k = �uk

vk
� , �53�

where k is the crystal momentum in the basal �kz=0� Bril-
louin zone.

The hopping between planes is described by the following
local Schrödinger equation, which couples a central plane l
to planes below �l−1� and above �l+1�,

M�l + �1����†�l−1 + �1�
���l+1 = 0. �54�

Here, �l−1,l=� and �l,l+1=��, i.e., the shift in the u sublattice
sites from plane l−1 to plane l is through a vector �ffi1. The
matrix M is given by

M = � E �0S

�0S� E
� , �55�

and

S = eik·ffi1 + eik·ffi2 + eik·ffi3 �56�

and

�+ = �0 1

0 0
�, �− = �0 0

1 0
� . �57�

A. Bernal hexagonal graphite

We first consider the BHG stacking order ABABAB,
where �l,l+1= �−1�l. Using translational invariance, we may
write, for the even and odd sites

�2j = e2ijkzd� , �58�

�2j+1 = ei�2j+1�kzd� , �59�

where

M� + 2�1 cos�kzd��−� = 0, �60�

M� + 2�1 cos�kzd��+� = 0. �61�

Inverting the second of these equations gives

� = − 2�1 cos�kzd�M−1�+� . �62�

Substituting this into the first equation yields


M − 4�1
2 cos2�kzd��−M−1�+�� = 0. �63�

Accordingly, we define

K � M − 4�1
2 cos2�kzd��−M−1�+ �64�

FIG. 6. �Color online� Spectral flow in rhombohedral graphite
showing edge state evolution. Top panel: armchair edge perpendicu-
lar to ffi; bottom panel: zigzag edge perpendicular to a1. The bulk
gaps are labeled by Chern numbers C which correspond to the
number of edge states crossing the gap as the angle �1 is varied. The
flux per unit cell here is rather large, with p=1 and q=200, corre-
sponding to a field of B=396 T. The topological features of the
edge state spectral flow are robust with respect to field.
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=� E �0S

�0S� E�1 −
4�1

2 cos2�kzd�
E2 − �0

2�S�2
� � . �65�

Setting det K=0 yields the eigenvalue equation for Bernal
graphite,

�E2 − �0
2�S�2�2 − 4E2�1

2 cos2�kzd� = 0, �66�

with solutions

Ek,kz

��,��� = − ��1 cos�kzd� − ����1
2 cos2�kzd� + �0

2�S�2,

�67�

where �=�1 and ��=�1. The four choices for �� ,���
correspond to the four energy bands.

From K�=0, we may write

� = ��1

�2
� = �− �0S

E
� . �68�

From Eq. �62�, then, we have

� = ��1

�2
� =

2E�1 cos�kzd�
E2 − �0

2�S�2
� − E

�0S� � = �� E

− �0S� � . �69�

B. Step defect

Consider now the stacking defect ABABCBCB, which in
terms of the �l,l+1 variables may be depicted as

¯ � + � − � + � − �− � + � − � + � ¯ . �70�

We label the central plane as l=0. For plane indices l�0, the
odd layers correspond to � planes and the even layers to �
planes. For l�0, the even layers correspond to � planes and
the odd layers to � planes. With l�0, we consider an inci-
dent plane wave running to the right �up� and a reflected
plane wave running to the left �down�. Then we have

�2j = ��e2ijkzd + ��e−2ijkzd�� , �71�

�2j+1 = ��ei�2j+1�kzd + ��e−i�2j+1�kzd�� , �72�

for all j�0. Here � is the complex amplitude of the incident
wave and �� is the complex amplitude of the reflected wave.

Correspondingly, we have

�2j−1 = ��ei�2j−1�kzd + ��e−i�2j−1�kzd�� , �73�

�2j = ��e2ijkzd + ��e−2ijkzd�� , �74�

for all j�0. Here �� is the incident amplitude �from the
right/top� and � is the reflected amplitude.

To match the solutions for positive and negative l, we first
invoke Eq. �54� with l=−1,

M�−1 + �1�
−�−2 + �1�

−�0 = 0. �75�

The most general solution for �0 is then

�0 = �� + ���� + �0

b
� , �76�

where b is an arbitrary complex number. Note that �− anni-
hilates any vector with upper component 0.

Next, set l= +1 and obtain

M�1 + �1�
+�0 + �1�

+�2 = 0. �77�

We may now write

�0 = �� + ���� + �a

0
� , �78�

where a is an arbitrary complex parameter. Note that �+

annihilates any vector with lower component 0.
The parameters a and b are then fixed by equating these

two expressions for �0, yielding

� a

− b
� = �� + ���� − �� + ���� . �79�

The wave function at l=0 can now be found. One simple
way is to take the upper component from Eq. �76� and the
lower component from Eq. �78�,

�0 = ��� + ����1

�� + ����2
� . �80�

Next, we write the Schrödinger equation for the l=0 plane
as follows:

0 = M�0 + �1�
+�−1 + �1�

−�+1

= � E �0S

�0S� E
���� + ����1

�� + ����2
� + �1��e−ikzd + ��eikzd���2

0
�

+ �1��eikzd + ��e−ikzd�� 0

�1
� . �81�

This yields two equations which may be solved to relate the
outgoing amplitudes � and �� to the incoming amplitudes �
and ��, i.e., to derive the S matrix. Using our previously
derived results for � and �, we find that the above equation
reduces to

0 = � E �0S

�0S� E
����� + ���

�� + ���
� + �1� ��e−ikzd + ��eikzd�

���eikzd + ��e−ikzd�
� .

�82�

This yields

0 = ��E + �1e−i�z/2 �0S

��0S� E + ��1e−i�z/2 �� ���
�

+ � �0S �E + �1ei�z/2

E + ��1e−i�z/2 ��0S� �� �
��
� , �83�

where �z�2kzd. The S matrix is defined by
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� �

��
� = � t r�

r t�
�

S matrix

� �

��
� .

�84�

Solving for S, we obtain

S =

− �2i�0S� sin��z/2� �1

�1 2i�0S sin��z/2�
�

�1 cos��z� + 2i� sin��z/2�
�1
2 cos2��z/2� + �0

2�S�2�1/2 .

�85�

Thus, for all � and ��, we have

R = �r�2 =
�1

2

�1
2 + 4�0

2�S�2 sin2��z/2�
, �86�

and

T = �t�2 =
4�0

2�S�2 sin2��z/2�
�1

2 + 4�0
2�S�2sin2��z/2�

. �87�

As k approaches either zone corner K or K�, the transmis-
sion goes to zero. This is because the chains which extend
through BHG are cut and shifted at the stacking fault. Curi-
ously, the transmission coefficient T goes to unity when �1
→0. Note also that along K-H and K�-H� we have S=0 and
hence R=1, T=0. At the band edges, we have

R��z = 0� = 1, R��z = �� =
�1

2

�1
2 + 4�0

2�S�2
, �88�

with T=1−R for the transmission coefficients �Fig. 7�.

C. Existence of bound states

To search for bound states, we take, for j�0,

�n=−2j = e�n�, �n=2j = �e−�n� , �89�

�n=−2j+1 = e�n�, �n=2j+1 = �e−�n� , �90�

and solve for �, �, and E. At the plane l=0 we have

�0 = � �1

��2
� . �91�

The Schrödinger equation for l�0 then yields

M� + 2�1 cosh����+� = 0, �92�

M� + 2�1 cosh����−� = 0. �93�

This yields

E = − ��1 cosh��� − ����1
2 cosh2��� + �0

2�S�2, �94�

where once again �=�1 and ��=�1. Again we have

� = �− �0S

E
�, � = �� E

− �0S� � . �95�

At l=0 we again have

M�0 + �1�
+�−1 + �1�

−�+1 = 0, �96�

which here yields

� E �0S

�0S� E
���
�
� + �1e−�� 1

��
� = 0. �97�

This yields two equations for �, which may be written as

� = −
�E + �1e−�

�0S
= −

�0S�

�E + �1e−� . �98�

This fixes the energy at

E = − ��1e−� � �0�S� . �99�

Thus, we have a bound state at positive energy �and a corre-
sponding one at negative energy� for each real positive value
of �, which solves one of the four equations �for � ,��
=�1�,

− ��1e−� + ���0�S� = − ��1 cosh���

+ ����1
2 cosh2��� + �0

2�S�2.

�100�

We assume �0�0. In the SWMC analysis,3 one has �1�
−390 meV and �0�3.2 eV. The vertical hopping is nega-
tive due to the sign of the overlap of pz orbitals on consecu-
tive layers. In order to have a bound-state solution, we must
have ���=sgn��1�, resulting in

��1
2 cosh2��� + �0

2�S�2 − �0�S� = ��1�sinh��� . �101�

The solution of which is

sinh��� =
��1�

2�0�S�
� u . �102�

FIG. 7. �Color online� Reflection and transmission coefficients
for k=�1b1+�2b2, for four sets of ��1 ,�2�, in the vicinity of the
Dirac point � 1

3 , 2
3 �. Only positive energies are shown.
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Thus, there are two bound states for all k in the Brillouin
zone, one at positive energy, corresponding to the choices
�=��=sgn��1�, and one at negative energy, corresponding
to the choices �=��=−sgn��1�. Solving for �, we have

e�� = � u + �1 + u2. �103�

The bound-state energy may now be written as

EB = ��1��u +
1

2u
− �1 + u2� �104�

=
�0

3�S�3

�1
2 + O�u−5� , �105�

where the expansion in the second line is for large u, i.e.,
�0�S�� ��1�. Note that the bound state disperses as �k�3. Re-
call for Bernal graphite that the dispersion is linear in �k� in
the vicinity of H and quadratic elsewhere along the K-H
spine. The length scale associated with the bound state is �−1.
For u→ , �−1	1 / ln�2u�.

Since the spectrum, including bound states, is particle-
hole symmetric, we may without loss of generality limit our
attention to E!0 states. The continuum bands, for fixed k,
range over energies

− ��1� + ��1
2 + �0

2�S�2 " Ek
�3� " �0�S� , �106�

�0�S�" Ek
�4� " ��1� + ��1

2 + �0
2�S�2. �107�

The bound state we have analyzed lives just below the bot-
tom of the Ek

�3� band. The binding energy is #=Emin
�3� −EB and

is given by

#�u�
��1�

=
1

2u
��1 + 4u2 − 1� + �1 + u2 − 1 − u . �108�

In Fig. 8 we plot the bound-state spectrum for the case
��1� /�0=0.1 for small values of �S�, i.e., close to the zone
corners, where u is large. At the zone center, �S�=3 is maxi-
mized and u achieves its minimum value; for reference,
uSWMC=0.020 57. The binding energy vanishes in both the
u→0 and u→ limits, as shown in Fig. 9. The maximum of
# occurs for u=1, where # / ��1�=0.032 25, corresponding to
a binding energy of approximately 13 meV. In the Appendix,
we compute the bound-state spectrum for the full SWMC
model.

V. FINITE B CASE

To obtain the Landau levels, we expand about the Dirac
points, following the method described in Sec. II A. We have
SK+B/�=−�b, with � given in Eq. �26�. At B=10 T one has
�=0.0371. With �1=0.39 eV and �0=3.16 eV, we have r
=0.123 and � /r=�B /B1 where B1=110.8 T. For physical
fields, then, we have ��r. Note that one can also write

��0 =
�2�vF

�B
, �109�

where vF=�3�0a /2� is the Fermi velocity �a=2.46 Å is the
lattice spacing in the hexagonal planes� and �B=�c /eB is the
magnetic length.

A. Bernal stacking and Landau levels

We define the operator-valued matrix

M̂ = � E ��0b

��0b† E
� . �110�

For perfect Bernal stacking, we have

M̂�2j + �1�
+��2j−1 + �2j+1� = 0, �111�

M̂�2j+1 + �1�
−��2j + �2j+2� = 0. �112�

We now write the wave function in terms of right and left
moving components,

�2j = �Ieiqj + O�e−iqj�� ��n�
��n + 1�

� , �113�

FIG. 8. �Color online� Energy bands and bound-state dispersion
for �1=0.1�0 for small values of �S�. The bulk bands Ek

�3,4� are
depicted by the red and blue hatched regions, respectively. The
bound state is the thick black dot-dash curve.

FIG. 9. �Color online� Binding energy of the bound state versus
ln�u�, where u= ��1 /2�0S�.
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�2j+1 = �Ieiq�j+1/2� + O�e−iq�j+1/2���x�n − 1�
y�n�

� , �114�

where we assume n�0. We therefore have

Mn�x

y
� + 2�1 cos�q/2��−��

�
� = 0, �115�

Mn+1��
�
� + 2�1 cos�qL/2��+�x

y
� = 0, �116�

where

Mn � � E �n��0

�n��0 E
� . �117�

This leads to

Pn�E� = det
Mn+1 − 4�1
2 cos2�q/2��+Mn

−1�−�

= E2 − �n + 1��2�0
2 −

4�1
2E2 cos2�q/2�
E2 − n�2�0

2 . �118�

Setting Pn�E�=0 yields the spectrum E=En�q� of Bernal
hexagonal graphite,

where r=�1 /�0. Expanding for small � /r, we have

En,− � �n�n + 1�
�2

2r
,��n� , �120�

En,+ � �n + 1 �,2r + �n +
1

2
� �2

2r
+ ¯� . �121�

B. Zero modes

The case n=0 must be considered separately. Consider the
wave function

�2j = � 0

��0� �� j,J, �2j+1 = �0

0
� . �122�

This is an E=0 eigenstate for any J. It describes a state
localized on a single plane.

We can find more solutions by writing

�2j = ���0�
��1�

�eiqj , �123�

�2j+1 = � 0

y�0� �eiq�j+1/2�. �124�

The Schrödinger equation then requires

� E ��0

��0 E
���
�
� + 2�1 cos�q/2��y

0
� = 0 �125�

on even planes and

E�0

y
� + 2�1 cos�q/2��0

�
� = 0 �126�

on odd planes. Thus, we have three equations for the remain-
ing three eigenvalues:

0 = E� + ��0� + 2�1 cos�q/2�y , �127�

0 = E� + ��0� , �128�

0 = Ey + 2�1 cos�q/2�� . �129�

We immediately see that E=0 is an eigenvalue, with eigen-
vector

���
y
� = � 0

− 2�1 cos�q/2�
��0

� . �130�

If we Fourier transform this solution, multiplying by
e−iq�J+1/2� and summing over q, we find a purely localized
state, with

�2J = − �1� 0

�1� � , �131�

�2J+1 = ��0� 0

�0� � , �132�

�2J+2 = − �1� 0

�1� � , �133�

with all other �n=0. This zero mode is localized on three
layers. The remaining two solutions are easily found to be

���
y
� = � E

− ��0

− 2�1 cos�q/2�
� , �134�

with E=E0,�����2�0
2+4�1

2 cos2�q /2�. These solutions are
wavelike and disperse with q.

C. Stacking fault

For the system with a single-step stacking fault, the situ-
ation is as depicted in Fig. 11. We then swap the notation for
even and odd planes on the right half of the system �layer
indices l�0� with respect to Eq. �114� and introduce wave
vectors qL and qR for the left and right half systems. We must
then match the energies on left and right sides of the fault as
follows:

En�qL� = En+1�qR� . �135�

To identify the bound states, we write the wave function
for l�0 as

�2j−1 = �� j�n + 1�
� j�n + 2�

�, �2j = � xj�n�
yj�n + 1�

� �136�

and for l�0 as
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�−�2j−1� = ��̄ j�n − 1�

�̄ j�n�
�, �−2j = � x̄j�n�

ȳ j�n + 1� � . �137�

At l=0 we write

�0 = � x̄0�n�
y0�n + 1�

� . �138�

The Schrödinger equation, evaluated for both even and odd
planes with l�0 and l�0, now gives eight relations among

the eight sets of coefficients �� j ,� j ,xj ,yj , �̄ j , �̄ j , x̄j , ȳ j� ex-
pressible as

� E �n + 1��0

�n + 1��0 E
��xj

yj
� + �1� 0

� j + � j+1
� = 0

�139�

� E �n + 2��0

�n + 2��0 E
��� j

� j
� + �1�yj−1 + yj

0
� = 0,

�140�

� E �n + 1��0

�n + 1��0 E
��x̄j

ȳ j
� + �1��̄ j + �̄ j+1

0
� = 0,

�141�

� E �n��0

�n��0 E
���̄ j

�̄ j

� + �1� 0

x̄j−1 + x̄j
� = 0. �142�

We can use these equations to eliminate the four sets of
coefficients �� j ,xj , �̄ j , ȳ j�,

� j = − �n + 2��0E−1� j , �143�

ȳ j = − �n + 1��0E−1x̄j , �144�

xj = − �n + 1��0E−1yj �145�

�̄ j = − �n��0E−1�̄ j . �146�

We then obtain

0 = Rn+1�E�yj + � j + � j+1, �147�

0 = Rn+2�E�� j + yj−1 + yj , �148�

0 = Rn+1�E�x̄j + �̄ j + �̄ j+1, �149�

0 = Rn�E��̄ j + x̄j−1 + x̄j , �150�

where

Rn�E� �
E2 − En

2

E�1
�151�

with En
2�n�2�0

2. We then have

�� j+1

yj
� = �Kn+1� j��1

y0
� �152�

and

��̄ j+1

x̄j

� = �Kn� j��̄1

x̄0

� , �153�

where

Kn�E� = �Rn�E�Rn+1�E� − 1 Rn�E�
− Rn+1�E� − 1

� . �154�

Note that det Kn�E�=1 and that the characteristic polyno-
mial det�$−Kn� is real for real $. It is easy to see that the
eigenvalues of Kn�E� form a complex-conjugate pair e�i� if
the energy E satisfies the condition the condition �Tr Kn�E��
"2 or

0" Rn�E�Rn+1�E�" 4. �155�

This is the condition that E lies within one of four energy
bands. The roots of Rn�E�Rn+1�E�=0 lie at E2=En

2 and E2

=En+1
2 , while the roots of Rn�E�Rn+1�E�=4 lie at E2=En,−

2 and
E2=En+1,+

2 , where

FIG. 10. �Color online� Landau levels in graphite. Subbands
En=1,+ �red�, En=1,− �blue�, and En=0,+ �green� are shown. The zero
modes are shown in black.

FIG. 11. �Color online� Landau-level indices for scattering at a
stacking fault in Bernal graphite.
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En,�
2 = �n + 1

2��2�0
2

+ 2�1
2 � �4�1

4 + �4n + 2��2�0
2�1

2 + � 1
2��4�0

4.

�156�

The bands �see Fig. 10� are then given by

En,−
2 " E2 " En

2, En+1
2 " E2 " En,+

2 . �157�

In the limit ���2�0
2 /�1

2�1, we can expand and write

En,−
2 � n�n + 1�

�4�0
4

4�1
2 , �158�

En,+ � 4�1
2 + �2n + 1��2�0

2. �159�

At plane n=0 the Schrödinger equation yields

��1 E

0 �n + 1��0
���̄1

x̄0

� + � 0 �n + 1��0

�1 E
���1

y0
� = 0.

�160�

D. Scattering matrix

If both �Tr Kn�E��"2 and �Tr Kn+1�E��"2, then we can
write

��̄1

x̄0

� = I�−
�n� + O��+

�n� �161�

and

��1

y0
� = I��−

�n+1� + O�+
�n+1�, �162�

where

Kn�E���
�n� = e�i�n��

�n�. �163�

Then we have

��̄ j+1

x̄j

� = Ie−ij�n�−
�n� + O�eij�n�+

�n� �164�

�� j+1

yj
� = I�e−ij�n+1�−

�n+1� + Oeij�n+1�+
�n+1�. �165�

The S matrix, which relates incoming to outgoing flux am-
plitudes, is then obtained from Eqs. �160�–�162�, upon re-
placing I→vL

1/2I, O→O�vL
1/2, I�→vR

1/2I, and O→OvR
1/2,

where vL=�En�qL� /�qL and vR=�En+1�qR� /�qR.

E. Bound states

If a state is evanescent on both sides of the stacking fault,
we must have that both �Tr Kn�E���2 and �Tr Kn+1�E���2.
The eigenvalues of Kn�E� are given by

%n,� = 1
2�n �

1
2
��n

2 − 4, �166�

where

�n�E� � Tr Kn�E� = Rn�E�Rn+1�E� − 2. �167�

In order that the solution in Eq. �153� not blow up for n

→� , we must require that �
�1

y0
� and �

�̄1

x̄0
� have no weight in

the �%��1 eigenspaces for Kn�E� and Kn+1�E�, respectively.
This means

Rn+2�E��1 + y0 = − %n+1
� y0, �168�

Rn+1�E��̄1 + x̄0 = − %n
�x̄0, �169�

where �%���1. When we combine these equations with
those in Eq. �160�, we obtain

M�
�1

y0

�̄1

x̄0

� = 0, �170�

where

M = �
Rn+2 1 + %n+1

� 0 0

�1 E 0 �n + 1 ��0

0 0 Rn+1 1 + %n
�

0 �n + 1 ��0 �1 E
� . �171�

A solution requires D�E�=det M�E�=0. We have

D�E� = 
ERn+2 − �1�1 + %n+1
� ��
ERn+1 − �1�1 + %n

��� − �n

+ 1��2�0
2Rn+1Rn+2. �172�

Let us look for a bound state with energy E which is
parametrically �in �� smaller than both �1 and ��0. Then
Rn�E��−En

2 /E�1, from which we obtain %n
���RnRn+1�−1.

Then find

D�E� � �1
2 − �n + 1�2�n + 2�

�6�0
6

�1
2E2 . �173�

Setting D�E�=0 yields the bound-state energy,

E2 = �n + 1�2�n + 2�
�6�0

6

�1
4 . �174�

Thus, the bound-state energy is proportional to �B�3/2. In Fig.
12, we plot the lowest ten bound state energies versus mag-
netic field.

VI. SURFACE SPECTROSCOPY OF BURIED
STACKING FAULTS

Our previous results for the transmission through a stack-
ing defect suggest that these defects are very effective in
decoupling graphene stacks. We analyze now the density of
states at a graphite surface in the presence of a stacking
defect a few layers below the surface. The stacking sequence
is �AB�N/2CBCB¯. The number of layers between the sur-
face and the defect is N.

The system can be separated into a perfect semi-infinite
graphite sample coupled to the defect layer and N layers
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between the defect and the surface. We will only include the
parameters �0 and �1. The semi-infinite portion can be inte-
grated out. The site of the defect layer connected to it ac-
quires a self-energy

�0�	� =
2�1

2

�	 −
��0S�2

	
� −��	 −

��0S�2

	
�2

− 4�1
2

.

�175�

We now integrate out this site, leading to the self-energy

�1�	� =
��0S�2

	 − �0�	�
. �176�

The procedure can be iterated leading to other self-energies
for sites 2 ,3 , . . . ,N, resulting in the hierarchy

�i+1�	� =
��0S�2

	
+

�1
2

	 − �i�	�
�177�

The Green’s functions at the two inequivalent sites of the
surface layer �N� are

Gu
N�	� =

1

	 −
��0S�2

	
−

�1
2

	 − �N−1�	�

�178�

and

Gv
N�	� =

1

	 −
��0S�2

	 −
�1

2

	 − �N−1�	�

. �179�

We show in Fig. 13 the surface density of states when
such a defect lies twenty and hundred layers below the sur-
face obtained by integrating the imaginary part of the
Green’s functions in Eq. �179� over the in-plane component
k� of the wave vector.

The density of states show a number of resonances, which
are smoothed out when the number of layers between the
defect and the surface is large. For N&1, we recover the
analytical results in Ref. 15. These results are consistent with
the analysis in Secs. I–V, which show that the transmission
through the defect is strongly suppressed. The layers be-
tween the defect and the surface become effectively decou-
pled from the bulk of the system.

The previous analysis can be extended to the study of
Landau levels in a magnetic field. As discussed earlier, the
hoppings within the layers depend now on the Landau-level
index n instead of on k�. The n dependence of the hoppings
in the two layers within the unit cell is different. Because of
this, the self-energy obtained by integrating out the perfect
semi-infinite region leads to a more complicated expression
than those in Eq. �175�. Within the region between the defect
and the surface the successive self-energies have a twofold
periodicity

�i�	� =
nvF

2�B
−2

	
+

�1
2

	 − �i−1�	�
, �180�

�i+1�	� =
�n − 1�vF

2�B
−2

	
+

�1
2

	 − �i�	�
. �181�

The resulting densities of states for Landau-level index n
=2 and two magnetic fields, B=1 T and B=10 T, are
shown in Fig. 14.

We show finally in Fig. 15 the dependence of the peaks in
the surface density of states on the magnetic field. As before,
there is a stacking defects ten layers below the surface. In
agreement with experiments,16–18 there are peaks which scale
as �B and peaks which scale as B.

VII. DISCUSSION

We have analyzed the appearance of two-dimensional fea-
tures in bulk graphite. We show that deviations from the
Bernal stacking order are very effective in inducing two-
dimensional behavior. An ordered array of graphene layers

FIG. 12. �Color online� Bulk energy bands �shaded and hatched
regions� and bound states �magenta curves� versus magnetic field
for �0=3.16 eV and �1=−0.39 eV �tight binding; nearest-neighbor
hopping only�. The lowest energy bound state merges into the band
continuum at B�15 T. The other bound states remain sharp over
the energy range shown and do not mix with the lowest bulk band.

(a) (b)

FIG. 13. �Color online� Left: Density of states for the two in-
equivalent sites of a graphite surface with a stacking defect 20
layers below the surface. Triangles �red� give the density of states at
the site with a nearest neighbor in the layer below. Squares �green�
give the density of states at the site without nearest neighbors in the
layer below. Right: as in the left panel, with a defect 100 layers
below the surface.
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with the rhombohedral stacking order leads to isolated Lan-
dau levels and to quantized quantum Hall plateaus at mod-
erate magnetic fields in doped systems. We found that the
gap between Landau-level subbands of indices n and n+1
opens at a field Bc,n with Bc,n=0�B0=0.123 T and Bc,n
	4nB0 for large n. By contrast, in Bernal graphite, the first
gap is predicted to open at fields on the order of 10 T,5 and
the second gap opens only at enormous field on the order of
1000 T.

We have also considered the simplest stacking defect in
Bernal graphite, which has locally a rhombohedral arrange-
ment. These defects are expected to be common in many
graphite samples, and concentrations up to 10% have been
reported.2,21,22 These defects are very effective in decoupling
the electronic states on either side. They also give rise to a
two-dimensional band of electronic states localized in the
vicinity of the defect. Within a nearest-neighbor tight-
binding model for the � band of graphite, with in-plane hop-
ping �0=3.16 eV and interplane hopping �1=0.39 eV, we
found a maximum binding energy of approximately 13 meV
for states rather close to the corners in the basal Brillouin
zone. When the full SWMC model is taken into account,3 we
obtain a maximum binding energy of almost 40 meV for
electron states and 20 meV for hole states; the binding en-
ergy is significant only along the zone faces.

What are the implications of our work for magnetotrans-
port in graphite with stacking faults? To describe the physics,
it is helpful to keep in mind the bound-state Landau-level
structure of Fig. 12. First, suppose the graphite is undoped.
In this case, the Fermi level remains pinned within the cen-

tral n=0 Landau levels. With only nearest-neighbor hop-
pings, there are two flat bands �i.e., which do not disperse as
a function of kz� at E=0 associated with each zone corner in
the basal Brillouin zone. Taking into account the weak
second-neighbor plane hoppings �2 and �5, these bands dis-
perse and acquire a width of about 40 meV. For the full
SWMC model, due to the breaking of electron-hole symme-
try, the Fermi level can drift within these central Landau
subbands even if the system is at electroneutrality. As shown
by Yoshioka and Fukuyama,23 due to interaction effects one
then expects a charge-density wave �CDW� at sufficiently
high fields. Anomalies in the observed magnetotransport data
corresponding to this CDW transition have indeed been
observed.24 The presence of stacking faults, which produce
bound states away from the central Landau levels, should not
affect this picture.

However, if the graphite is lightly doped, a different pic-
ture emerges.5 In this case, the central Landau levels become
filled at a field B�= 1

2nd�0, where n is the bulk carrier density
and d is the interplane separation �i.e., the c-axis lattice con-
stant is 2d due to Bernal stacking�. For fields B�B�, the
central Landau bands are filled and the Hall conductivity
should be quantized at a value 2e2 /hd.5 As B is decreased
further, the Fermi level crosses the bound-state energy. The
bound-state Landau levels �one for each spin value and in-
equivalent zone corner� then makes a contribution to �xy, of
magnitude #�xy

fault=2xe2 /hd, as shown in the sketch in Fig.
16, where x is the concentration of stacking faults. Upon
further reducing B, the Fermi level enters into the first bulk
band and �xy begins to rise continuously. As EF crosses other
bound-state Landau levels, additional small jumps of
#�xy

fault=2xe2 /hd should appear. At a finite concentration x of
stacking faults, the bound states will themselves form a band,
and the small jumps will no longer have infinite slope. The
scenario discussed here shows how anomalous features could
occur in the high-field magnetotransport of doped graphite;
however, we cannot find any obvious connection between
our work and the observations of Kempa et al.14

(b)(a)

FIG. 14. �Color online� Surface density of states for a semi-
infinite stack with a defect ten layers below the surface. The
Landau-level index is n=2, and the fields studied are B=1 T �red�
and B=10 T �blue�. Left: Sublattice with a nearest neighbor in the
contiguous layer. Right: Sublattice without a neighbor in the con-
tiguous layer.

(b)(a)

FIG. 15. �Color online� Surface density of states at the sublattice
without a nearest neighbor in the next layer. The system has a
stacking fault of the type described in the text ten layers from the
surface. Top: n=2. Bottom: n=10.

FIG. 16. �Color online� Sketch of the expected behavior of the
Hall conductivity in the quantum limit for a lightly doped system.
The leftmost plateau is a bulk effect related to the Landau levels of
Bernal graphite �Ref. 5�. The size of the other jumps depends on the
concentration x of stacking defects. The continuum bands of Lan-
dau levels lead to a monotonically varying conductivity.
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Stacking defects below a graphite surface decouple the
surface region from the bulk, leading to quasi-two-
dimensional behavior, with localized Landau levels. We have
shown how such buried defects leave a signature which can
be measured by surface spectroscopy.

Note that the quasi-two-dimensional features in bulk
graphite analyzed here have been obtained for interlayer cou-
plings in the upper range of those discussed in the literature.
Lower values will further enhance these effects. Finally, our
results suggest that the electronic properties of few layer
graphene samples can be substantially modified by changes
in the stacking order.
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APPENDIX: FULL SWMC TREATMENT
OF STACKING FAULT

We define the vectors

�n =�
un
�

vn
�

un
�

vn
�
� �n� 0�, �n =�

vn
�

un
�

vn
�

un
�
� �n� 0� . �A1�

For a stacking defect ABABCBCB the SWMC couplings
are depicted in Fig. 17. In fact, additional couplings must be
introduced at the defect. In the bulk, sites have either zero or
two c-axis neighbors, but at the stacking fault there are two
sites with a single such neighbor. One expects the associated
on-site energy #�� 1

2#. In addition, there are three interlayer
couplings at the defect which in principle are distinct from �3
and �4 and which we denote in the figure by dotted pale blue
lines, with hopping amplitude �̃4. For simplicity, we shall
take #�=# and �̃4=�4 for two of the links and �̃4=�3 for the

other link. For details, see the definition of the F matrix
below.

Let each pair of layers be indexed by a nonzero integer n.
From the figures, we can read off the Schrödinger equations

M�n−1 + K�n + M†�n+1 = 0 �n� − 1� , �A2�

M��n−1 + K��n + Mt�n+1 = 0 �n� 1� , �A3�

where, consistent with the full SWMC Hamiltonian,3,19

K =�
− E − �0S �4S �3S�

− �0S� − E + #� �1 �4S

�4S� �1 − E + #� − �0S

�3S �4S� − �0S� − E
� �A4�

and

M =�
1
2�2 0 �4S �3S�

0 1
2�5 �1 �4S

0 0 1
2�5 0

0 0 0 1
2�2

� . �A5�

We take the following SWMC parameters from Ref. 19:

�0 = 3160 meV, �1 = 390 meV,

�2 = − 20 meV, �3 = 315 meV,

�4 = 44 meV, �5 = 38 meV,

with #=−8 meV. Here, #� is a combination of the original
SWMC parameters,

#� = # + �5 − �2, �A6�

hence #�=50 meV.
At the defect, the Schrödinger equation yields

M�−2 + K�−1 + F†�1 = 0, �A7�

F�−1 + K��1 + Mt�2 = 0, �A8�

where

F = �
1
2�2 0 �3S �4S�

0 0 �4S� �1

0 0 0 1
2�5

0 0 1
2�2 0

� . �A9�

1. Scattering matrix and bound states

We write �n=zn� �for n�0� and �n=z�n�� �for n�0�. In
the bulk ��n��0�, we then have �for both sides�

�z−1M + K + zM†�� = 0. �A10�

In order for a solution to exist, we require

P�z� � det�z−1M + K + zM†� = 0, �A11�

which is an eighth-order equation in z. Note that P�z�=0
guarantees that P�z�−1�=0. It can also be shown, due to the

FIG. 17. �Color online� SWMC couplings for a stacking defect
in Bernal graphite showing more clearly the four sublattice struc-
ture on either side of the defect.
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form of M, that P�z�= P�z−1�. Thus, the allowed values of z
come in sets �z ,z� ,z−1 ,z�−1�.

Within a bulk energy band, two of the eight z roots are
unimodular and may be written as z1=eik and z5=e−ik with k
real. Their associated eigenvectors are �1,5. Of the remaining
six roots, three �z2 ,z3 ,z4� each have modulus greater than
unity and are thus un-normalizable on the right. The remain-
ing three roots �z6 ,z7 ,z8� each have modulus smaller than
unity and are un-normalizable on the left. We keep only the
normalizable solutions and write

n� 0: �n = Ieikn�1 + O�e−ikn�5 + A2z2
n�3 + A3

nz3
n�3

+ A4z4
n�4, �A12�

n� 0: �n = I�e−ikn�1
� + Oeikn�5

� + A6z6
�n�6

� + A7z7
�n�7

�

+ A8z8
�n�8

�. �A13�

Equations �A7� and �A8� then yield eight equations in the ten
unknowns �I ,O ,I� ,O�� and �A2 ,A3 ,A4 ,A6 ,A7 ,A8�. These
then determine, for each energy E, the S matrix defined by
the relation

�O
O�

� = � t r�

r t�
�

S

� I
I�
� .

�A14�

If two bands overlap, then we have eigenvalues z1,5
=e�ik and z2,6=e�ip, with �z3,4��1 and �z7,8��1;

n� 0: �n = Ieikn�1 + O�e−ikn�5 + Ĩeipn�2 + Õ�e−ipn�6

+ A3
nz3

n�3 + A4z4
n�4, �A15�

n� 0: �n = I�e−ikn�1
� + Oeikn�5

� + Ĩ�e−ipn�2
� + Õeipn�6

�

+ A7z7
�n�7

� + A8z8
�n�8

�. �A16�

The S matrix is then 4�4, and we should take care to prop-
erly define it to act on flux amplitudes, viz.,

�
v1,k

1/2O
v1,k

1/2O�

v2,p
1/2Õ

v2,p
1/2Õ�

� = S�
v1,k

1/2I
v1,k

1/2I�

v2,p
1/2Ĩ

v2,p
1/2Ĩ�

� , �A17�

where v1,k=�E1�k� /�k and v2,p=�E2�p� /�p. If three bands
overlap, the S matrix is 6�6.

2. Bound states

When E does not lie within a bulk band, we write

n� 0: �n = A1z1
n�1 + A2z2

n�2 + A3
nz3�3 + A4z4

n�4,

�A18�

n� 0: �n = A5z5
�n�5

� + A6z6
�n�6

� + A7z7
�n�7

� + A8z8
�n�8

�.

�A19�

Here, �z1,2,3,4��1 and �z5,6,7,8��1. Without loss of generality,
we may assume

zu
� = zu+4

−1 , �A20�

for u=1,2 ,3 ,4. Equations �A7� and �A8� now give eight
homogeneous equations in the eight unknowns A1–8. A non-
trivial solution can only exist when the corresponding deter-
minant vanishes, which puts a single complex condition on
the energy E. The solutions are the allowed bound states.

We now apply Eqs. �A7� and �A8�

M�−2 + K�−1 + F†�1 = 0 �A21�

F�−1 + K��1 + Mt�2 = 0 �A22�

to

�n = �
u=1

4

Auzu
n�u, �n = �

l=5

8

Alzl
�n�l

� �A23�

using

�z−1M + K + zM†�� = 0, �A24�

�z�−1M� + K� + z�Mt��� = 0. �A25�

This yields

M†�0 = F†�1, F�−1 = M��0, �A26�

which, when expanded, gives

�
u=1

4

AuM†�u = �
l=5

8

Alzl
�F†�l

� �A27�

and

�
u=1

4

Auzu
−1F�u = �

l=5

8

AlM
��l

�. �A28�

These give eight homogeneous equations in the eight un-
knowns and can only be solved when the corresponding de-
terminant vanishes, which is the condition that E lies at a
bound-state energy.

3. Method of solution

Equation �A10� can be written as two coupled equations

z−1M� + �� = 0, �A29�

K� + zM†� − �� = 0. �A30�

These equations may be recast as the rank-8 system

�z + NK − N

M z
�� �
��
� = 0, �A31�

where N�M†−1. Thus the solutions zj are the complex eigen-
values of the matrix

Q = �− NK N

− M 0
�� �
��
� . �A32�

Note that det�Q�=det�M� ·det�N�=1 is independent of K and
of the above-diagonal elements of M and the below-diagonal
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elements of N. From row reduction, it is easy to derive

N =
4

�2�5�
1
2�5 0 0 0

0 1
2�2 0 0

− �4S� − �1�2�5
−1 1

2�2 0

− �2
−1�3�5S �4S� 0 1

2�5

� .

�A33�

Equations �A27� and �A28� can now be written as an 8�8
system

� Mab
† �bu − zl

�Fab
† �bl

�

zu
−1Fab�bu − Mab

� �bl
� �

R

�Au=1,2,3,4

Al=5,6,7,8
� = 0,

�A34�

where a, b, and u run from 1 to 4 and l runs from 5 to 8. The
implied sums for each submatrix are over b and not u or l,
and 'ij is the matrix of eigenvectors of Q,

�
k=1

8

Qik'kj = zi'ij �no sum on i� , �A35�

where i, j, and k run from 1 to 8. The bound-state condition
is det�R�=0.

We have numerically found the bound states lying in the
gap between the bonding and antibonding � bands of graph-
ite. Our results are displayed in Fig. 18. For the full SWMC
calculation, there is no longer particle-hole symmetry. We
find that the binding energy �i.e., the distance of the bound
state from the closest band extremum� is considerable along
the entire K-M edge. This is in contrast to our analytical
results for the nearest-neighbor model, where the bound-state
energy was considerable only for �S���1 /2�0�0.062,
which is satisfied only on a small ring about the K and K�
points. On the other hand, the lack of bound states along the
�-K edge implies a finite broadening of the Landau levels
derived from this band.

It is important to realize that the SWMC model itself is
only valid close to the K-H spine in the Brillouin zone. The
model must be extended, as in Ref. 20, to include other tight-
binding parameters in order to fit the � band throughout the
entire zone, which is necessary in order to model various

optical transitions. In this case, the in-plane hopping is modi-
fied as follows:

�0S → �0
�1�S1 + �0

�2�S2 + �0
�3�S3, �A36�

where ��n� and Sn are, respectively, the amplitude and lattice
sum of eik·ffi corresponding to the nth nearest-neighbor in-
plane intersublattice hopping20 subjected to the constraint

�0
SWMC = �0

�1� − 2�0
�2� + �0

�3�. �A37�

It is a rather simple matter to include such effects in our
calculation, and we find in general for a broad set of possible
parametrizations satisfying the constraint that our results
have the same qualitative features.

Our approximations regarding the parameters #� and �̃4
are such that, were their values known, our binding energies
could easily be off by perhaps a few tens of millivolts. We
expect, however, that the general features found here should
still pertain, namely, a single bound state whose binding en-
ergy is maximized at several tens of millivolts along the K-M
edge in the basal Brillouin zone.
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